Green hydrogen - potential for climate protection and the energy transition

Germany is to be climate-neutral as early as 2045. To be able to achieve the climate targets, a genuine energy and climate turnaround must succeed. In the long term, renewable energy must be used in all energy-intensive and greenhouse gas-intensive sectors via "power-to-x" systems. As the last necessary building block, green hydrogen has a key role to play here. The high demand makes hydrogen imports indispensable. In the first part, the article highlights the possibilities of power-to-X technologies and their potential for climate protection. The second part shows the concrete power and hydrogen requirements and discusses the challenges of hydrogen imports.

Green hydrogen - the fourth pillar of the energy transition

Germany is to be climate-neutral as early as 2045. This is what the German government decided in June 2021 in the new climate law. Prior to this, the Federal Constitutional Court ruled that no forward-looking plan had yet been made to reduce greenhouse gas emissions. According to the BVerfG, climate policy must therefore be greatly accelerated in order to achieve its goals and not impose unreasonable burdens on future generations. The successes must be measured against the national CO2 budget. According to calculations by the Helmholtz Climate Initiative, Germany's current budget (from 2021) is around 8.7 Gt CO2.[1] Germany may only emit this much CO2 in order to be able to meet the Paris climate targets of limiting the average global temperature to well below 2 °C. This corresponds to around ten times the amount emitted in the past. This corresponds to around ten times the amount that Germany currently still emits annually.[2] Several cross-sectoral steps are necessary to achieve the climate targets: The expansion of renewable energies, the use of electricity in sectors that can be directly electrified, and energy conservation through efficiency measures. The fourth crucial building block of the energy turnaround is the decarbonization of those sectors that cannot be directly electrified.[3] These include the steel, cement ,parts of the chemical industry, heavy goods and air and shipping traffic. There, a climate-neutral alternative to fossil raw materials and fuels is needed.

This alternative is green hydrogen. Via so-called power-to-X processes (PtX), hydrogen can replace coal, natural gas and crude oil and thus make a decisive contribution to greenhouse gas neutrality. [4]

PtX refers to all processes that convert electricity into the energy carriers gas ("power-to-gas", PtG, which includes hydrogen), heat ("power-to-heat", PtH) and fuel ("power-to-fuel", PtF). Depending on the production process of the hydrogen, one speaks of certain hydrogen "colors". The gas itself is colorless. It is referred to as "green" if it is produced by electrolysis based on renewable energies.

Applications of green hydrogen and decarbonization potential

PtX makes it possible to transport renewably generated electricity between sectors and to couple them together in the sense of a holistic energy system (sector coupling).Application in the steel and chemical industry.

One area of application under discussion is industry, which to date has made a considerable contribution of around 23% to greenhouse gas emissions in Germany due to its high demand for fossil raw materials.[7] Within this sector, renewably generated hydrogen will play an important role for steel production before 2030. This development is supported, among other things, by the binding quota for green hydrogen in the steel industry from 2030, which was decided in the course of Fit For 55.[8] With the direct reduction of iron ore on the basis of hydrogen, the central technology for this is already available in the core.[9] If green hydrogen were used, this would result in high CO2 savings potentials. Complete conversion of German steel production to green hydrogen would require 2 million metric tons of hydrogen (70 TWh) per year, which would save around 50 million metric tons of CO2 per year.[10] This would be equivalent to almost all of Ireland's greenhouse gas emissions in 2019.[11] In the cement industry, green hydrogen can be used at least proportionally in the fuel mix to achieve the high operating temperatures required for burning the limestone into cement clinker.[12] In the chemical industry, green hydrogen can be used at least proportionally in the fuel mix to achieve the high operating temperatures required for burning the limestone into cement clinker.[13] In the chemical industry, green hydrogen can also be used as a fuel for the production of cement clinker.

Concrete potential applications are also emerging in the chemical industry. Hydrogen already plays a major role as a basic material for the chemical and petroleum industries. However, the current demand of around 1 million t for the chemical industry has so far been met almost exclusively by gray hydrogen. According to the National Hydrogen Council, decarbonization in this area cannot be expected before 2030, since in some cases new technical plants first have to be built.[13] However, a large number of synthetic substances can be produced on the basis of green hydrogen. In several projects, the German Federal Ministry of Education and Research (BMBF) is promoting the use of regeneratively generated hydrogen for the production of climate-friendly chemicals ("power-to-chemicals"), with which decarbonization in the area of basic material production can be achieved on a pro rata basis.[14] Of particular importance here is the climate-neutral production of ammonia, methanol and naphtha.

Ammonia serves as an important basis for the production of many plastics and synthetic fibers and is used extensively in agriculture as a fertilizer. Ammonia is produced in the Haber-Bosch process. In this process, hydrogen reacts with nitrogen to form ammonia molecules. The nitrogen required for the reaction can be obtained from the air. Equally important is the climate-neutral production of methanol, which can be produced from the synthesis of hydrogen and CO2. It is one of the most important feedstocks in the chemical industry and can also be used as a fuel or solvent.[15] Naphtha is one of the most widely used carbonaceous feedstocks in the chemical industry. It too can be synthesized from CO2, increasing the demand for green hydrogen for the chemical industry many times over to about 7 million tons (227 TWh) per year. This could save a total of around 54 million t of CO2 per year in the industry.[16] The greenhouse gases required for the synthetic production of the substances can be extracted from the ambient air using the direct air capture process and processed for the synthesis.[17] The use of green hydrogen in the transport sector and the production of "green hydrogen" in the chemical industry is also possible.

Use in the transport sector and production of "e-fuels"

With synthetically derived fuels, it is also possible to decarbonize the transport sector, especially where battery technology reaches its limits. Final energy consumption in the transport sector totaled 656.2 TWh in 2019, with only 5.5% of this energy being of renewable origin.[18] Despite progress in the development of lower-emission internal combustion engines, overall emissions in the transport sector increased by around 5% in 2019 compared to 1995. [19] Because of their high energy density, there is a need for synthetic fuels, especially for aviation and marine transport, as well as work machines (e.g., construction industry and agriculture) and parts of the long-distance or heavy-duty transport sector.[20] Two processes are available for the synthesis of climate-neutral fuels based on green hydrogen, so-called e-fuels: Fischer-Tropsch synthesis and methanol synthesis. In Fischer-Tropsch synthesis, a synthesis gas is first generated using very high operating temperatures, which is then converted into a hydrocarbon mixture. Substances such as diesel or kerosene can then be obtained from this mixture in a refining process.[21] The process is exothermic and releases waste heat that can be used to generate energy. Alternatively, methanol can be obtained from the synthesis gas for use in the chemical industry or as a fuel. However, there are several processes for methanol synthesis. With all synthesis processes, there is always the question of the CO2 source. In the long term, the required CO2 can be captured and processed from the ambient air with the help of the direct air capture process, using energy.[22] In addition, there are various other carbon sources, some of which, however, have a significant impact on the climate.[23] In this case, processes with closed carbon cycles should be used.

Here, processes with closed carbon cycles should be developed.[24]

Within the building and heating sector, the use of green hydrogen is generally considered less efficient due to existing alternatives such as electric-powered heat pumps and gas boilers,[25] although heating via hydrogen combustion may be an important addition for densely populated residential areas due to space constraints.[26]

Hydrogen as energy storage

Hydrogen will also play a central role as a storage medium. The stability of an electricity system based 100% on renewable energies is jeopardized in the long term, as wind and solar power plants are dependent on the volatile occurrence of wind and sun.[27] The dark lull in winter is the much-cited scenario here.[28] Over short periods of a few hours, pumped-storage power plants can compensate for fluctuations in generation. For longer-term balancing of several days or weeks, only chemical storage systems based on hydrogen, methane or other gases have been suitable to date.[29] With the help of PtX, excess RE electricity can be transformed into so-called storage gas (hydrogen) by means of electrolysers installed to serve the grid. With the help of PtX, the surplus RE electricity can be transformed into so-called storage gas (hydrogen) by means of electrolysers installed to serve the grid, temporarily stored in salt caverns and reconverted into electricity when required.[30] It is also conceivable to feed part of the electricity into the existing gas grid.[31] The use of electrolysers to serve the grid also has short-term advantages in view of the fact that grid expansion is too slow. If peaks in electricity generation occur due to high solar irradiation and wind generation, RE plants have to be temporarily curtailed as before (so-called redispatch) to prevent grid congestion, as the existing grid infrastructure is not sufficient to transport the RE electricity. [32] In addition to the lack of efficiency, this is very costly, as operators whose plants are regulated must be compensated by the transmission system operators (TSOs).[33] Furthermore, hydrogen can be transported liquefied, bound (e.g., bound to the carrier oil "liquid organic hydrogen carrier," LOHC), or in gaseous form independently of the existing electricity grid.[34]

Demands and the question of the origin of green hydrogen.

The wide range of possible applications for green hydrogen raises the question of the origin of the green electricity required.[35] In addition, energy losses occur during the production of hydrogen by electrolysis. The average efficiency of electrolysers is currently 71%,[36] which means that almost one third of the energy used cannot be converted to hydrogen, but is dissipated to the environment in the form of waste heat. The demand for electricity will therefore increase significantly as sector coupling progresses. Well-known research institutes, such as the Öko-Institut, the Wuppertal Institute, Prognos, Agora Energiewende and Agora Verkehrswende, as well as the Climate Neutrality Foundation, anticipate a total electricity demand of around 1000 TWh in 2045.[37] This would increase electricity demand by around 75% compared to 2019 (gross electricity consumption in 2019: 569 TWh).[38] This means significantly greater efforts to expand renewable energies than are currently planned or implemented.[39] The demand for green energy is expected to increase by around 75% in 2045.

Balances of green hydrogen demand vary widely depending on the scenario, in which sectors and to what extent green hydrogen is to be used for decarbonization. [40] The National Hydrogen Strategy (NWS) calculates a preliminary annual hydrogen demand of between 90 and 110 TWh by 2030.[41] The "Climate Neutral Germany 2045" scenario, which focuses on direct electrification, assumes a demand of 422 TWh, of which more than two-thirds (326 TWh) will be imported and 96 TWh will come from domestic electrolysis capacity.[42] The coalition agreement of the new German government now explicitly focuses hydrogen production on domestic generation (in conjunction with offshore wind energy). Nevertheless, it is mainly the climatic conditions (less solar radiation and wind occurrence than in other regions) as well as the fundamentally limited areas for RE generation that make it difficult to be able to meet Germany's hydrogen demand predominantly from domestic generation.[43] This is the reason why the German government has decided to focus on hydrogen production.

Therefore, with the establishment of the H2Global Foundation, the German government has paved the way to establish trading partnerships for green hydrogen with non-EU countries with sunny and windy regions.[44] Countries in North and West Africa, the Middle East, Australia, or Chile are considered possible trading partners. Because of their particularly suitable climatic conditions, these could produce Green Hydrogen or other hydrogen-based synthetic fuels for a global market at comparatively low cost.[45]

Political, economic and logistical challenges

However, geopolitical, developmental, economic and logistical factors must be taken into account when it comes to imports. For example, hydrogen imports must not jeopardize the energy transition in the exporting countries: Morocco, for example, which is considered a geographically suitable trading partner due to its favorable climatic conditions and relatively short distance to Germany, currently covers only 15% of its energy consumption from renewable sources, and 68% of the energy it requires still comes from fossil sources.[46] Hydrogen exports at this stage would lead to an impediment to local decarbonization processes, which would be counterproductive for global climate protection.[47] The question of transport has also been raised so far.

The issue of transportation is also unresolved so far: depending on the distance, hydrogen can be transported by pipeline or ship. The logistical challenges of the means of transport are closely related to the so-called supply costs. As a rule, transport via pipelines is cheaper than via ships. Hydrogen pipelines allow the transport of large quantities of hydrogen and, according to surveys by the National Hydrogen Council, are still more economical than ship transport even for distances of up to 10,000 km.[48] The pipelines can also function as storage facilities. In addition, a particular advantage may be the ability to repurpose existing natural gas pipelines, provided they are made of sufficiently high-quality steels.[49] At the same time, pipeline-based transport may encounter significantly higher (permitting) legal hurdles. A disadvantage of ship transport is again the necessary transformation of the hydrogen. Thus, it must either be liquefied ("liquid hydrogen", LH2) with high energy input, compressed by pressure, bound to the carrier oil LOHC by hydrogenation, or converted into ammonia and methanol. However, the liquefaction, compression, and hydrogenation processes are all energy intensive. In the case of gaseous hydrogen, however, the transportable energy quantities are often too small, making ship transport unprofitable.[50] According to calculations by the economic research institute Prognos, the high transport costs would almost outweigh the cheaper production costs in countries in North Africa and the Middle East.[51] The energy-intensive process of liquefaction, compression, and hydrogenation is not yet available.

Another challenge is the still missing regulatory framework for the trade with green hydrogen. Until now, there has been no uniform certification system that could classify the gas as unambiguously green. However, this is needed on the one hand to be able to guarantee and prove the real climate impact of the traded hydrogen and on the other hand to be able to ensure an international market ramp-up for green hydrogen through the harmonization of labels.[52] The CertifHY project has therefore been testing an EU-wide trading system and register of certificates of origin for green and low-carbon hydrogen since 2019 with the participation of the EU Fuel Cell and Hydrogen Joint Undertaking (FCH JU) initiative. However, a regulatory definition of green hydrogen is still pending at the EU level. It is part of the revision of the Renewable Energies Directive with which the EU wants to increase the share of renewable energies in energy consumption to a total of 40% by 2030. The extent to which the criteria developed will then also apply to international hydrogen trading is still open.

Conclusion

Green hydrogen is the last necessary building block for a complete energy transition. This is because only its use via "power-to-x" systems will also allow the decarbonization of those areas that cannot be directly electrified.
Therefore, the use of green hydrogen is particularly useful in the sectors of industry (steel, chemicals and cement) and shipping, aviation and heavy transport via the production of "e-fuels" through synthesis processes.
In a volatile energy system of the future, which will be characterized by fluctuations in generation due to irregular solar radiation and wind occurrence, hydrogen also offers the central function of an energy store.
Even in scenarios of "minimal" use of green hydrogen, which is limited to areas that cannot be directly electrified or are very difficult to electrify, large quantities of demand are emerging that cannot be met by domestic generation alone.
Therefore, trade partnerships for imports with countries of sun- and wind-rich regions will be inevitable. Key challenges here are not to cannibalize local energy turns in the countries of origin, to find suitable transport systems that still keep the traded hydrogen competitive, and to develop and implement an international certification system with uniform criteria to define green hydrogen.

Consultants: Cäcilia Gätsch and Benita Stalmann

Reference list:

[1] Helmholtz Klima Initiative, Wieviel CO2 dürfen wir in Deutschland noch ausstoßen, um die Klimaziele zur erreichen? (2021), abrufbar unter: https://www.helmholtz-klima.de/faq/wie-viel-co2-duerfen-wir-deutschland-noch-ausstossen-um-die-klimaziele-zu-erreichen. Das Budget ist dabei auf den Anteil der deutschen an der Weltbevölkerung (rund 1,1%) runtergerechnet. Im vorliegenden Artikel wird sich bei der Nennung von aktuellen Energie-Bedarfen und -Verbräuchen grundsätzlich auf die Zahlen von 2019 als Nicht-Covid-19-Jahr bezogen.

[2] Agora Energiewende (Hrsg.), Abschätzung der Klimabilanz Deutschlands für das Jahr 2021. Analyse (August 2021), S. 3.

[3] Vgl. Stiftung Klimaneutralität, Agora Energiewende, Agora Verkehrswende et. al. (Hrsg.), Klimaneutrales Deutschland 2045. Wie Deutschland seine Klimaziele schon vor 2050 erreichen kann. Zusammenfassung (Juni 2021), S. 22ff.

[4] BMU: Schulze: Grüner Wasserstoff spielt zentrale Rolle bei Bekämpfung des Klimawandels. Pressemitteilung Nr. 142/21. Berlin, 23.06.2021; online unter: https://www.bmu.de/pressemitteilung/schulze-gruener-wasserstoff-spielt-zentrale-rolle-bei-bekaempfung-des-klimawandels/ (zuletzt abgerufen 19.07.2021).

[5] Ekardt/van Riesten/Hennig, CCS als Governance- und Rechtsproblem, Zeitschrift für Umweltpolitik und Umweltrecht 2011, S. 409 ff.

[6] SRU: Wasserstoff im Klimaschutz: Klasse statt Masse. Stellungnahme. Berlin, Juni 2021, online unter: https://www.umweltrat.de/SharedDocs/Downloads/DE/04_Stellungnahmen/2020_2024/2021_06_stellungnahme_wasserstoff_im_klimaschutz.pdf?__blob=publicationFile&v=4 (zuletzt abgerufen 19.07.2021). Der SRU berät die Bundesregierung.

[7] Umweltbundesamt (UBA) (Hrsg.), Emissionsübersichten in den Sektoren des Bundes Klimaschutzgesetzes, 2020. Vgl. auch Deutsche Emissionshandelsstelle im Umweltbundesamt (Hrsg.): Treibhausgasemissionen 2019 - Emissions-handelspflichtige stationäre Anlagen und Luftverkehr in Deutschland (VET-Bericht 2019), Berlin 2020, S. 1.

[8] European Commission, The role of hydrogen in meeting our climate and energy targets, Juli 2021.

[9] Wasserstoffrat (Hrsg.), Wasserstoffaktionsplan Deutschland 2021 ­– 2025 (Juli 2021), S. 14. Die Direktreduktion auf Erdgasbasis ist bereits Stand der Technik, vgl. ebd. Vgl. auch Umweltbundesamt (Hrsg.): Emissionen aus Betrieben der Metallindustrie, Dessau-Roßlau 2020.

[10] Wasserstoffrat (Hrsg.), Wasserstoffaktionsplan, S. 14.

[11] UBA (Hrsg.), Übersicht: Treibhausgas-Emissionen in der Europäischen Union (13.09.2021), abrufbar unter: https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-der-europaeischen-union#hauptverursacher.

[12] UBA (Hrsg.), Dekarbonisierung der Zementindustrie (Februar 2020), S. 2f.

[13] Wasserstoffrat (Hrsg.), Wasserstoffaktionsplan, S. 14.

 

[14] Bundesministerium für Bildung und Forschung (Hrsg.): Carbon2Chem, Berlin 2020.

[15] Sterner/ Stadler: Energiespeicher – Bedarf, Technologien, Integration, Düsseldorf 2014, S. 412.

[16] Wasserstoffrat (Hrsg.), Wasserstoffaktionsplan, S. 14.

[17] Fraunhofer ISI et al.: Working Paper Sustainability and Innovation No. S 01/2018 - Sektorkopplung – Definition, Chancen und Herausforderungen, Karlsruhe 2018, S. 75 ff.

[18] Bundesministerium für Wirtschaft und Energie (Hrsg.): Erneuerbare Energien in Zahlen – Nationale und internationale Entwicklung im Jahr 2019, Berlin 2019, S. 20. Die Zahlen des BMWi zum Energieverbrauch im Verkehrssektor beziehen nicht den internationalen Luftverkehr mit ein, vgl. ebd., Anm. 4.

[19] UBA (Hrsg.), Emissionen des Verkehrs (09.06.2021), abrufbar unter: https://www.umweltbundesamt.de/daten/verkehr/emissionen-des-verkehrs#pkw-fahren-heute-klima-und-umweltvertraglicher.

[20] Sterner/ Stadler: Energiespeicher - Bedarf, Technologien, Integration, Berlin 2017.

[21] Brauner: Systemeffizienz bei regenerativer Stromerzeugung - Strategien für effiziente Energieversorgung bis 2050, Berlin 2019, S. 153.

[22] Ausführlich zu den verschiedenen Quellen des CO2 und ihrer Klimawirkung Kasten/ Heinemann u.a., Kein Selbstläufer: Klimaschutz und Nachhaltigkeit durch PtX, S. 17 ff.; S. 60 ff.

[23] Ausführlich hierzu Breyer/ Fasihi/ Aghahosseini, Mitigation and Adaption Strategies for Global Change 2020, 43 ff.; Keith et al., A Process for Capturing CO2 from the Atmosphere, July 2018, 1573 ff.

[24] Fraunhofer Institut et al. (Hrsg.): Eine Wasserstoff-Roadmap für Deutschland, Karlsruhe 2019, S. 25.

[25] Auer/ Purper: BUNDstandpunkt - Stromeinsatz zu Heizzwecken, Berlin 2016. Hier findet sich auch eine kritische Einschätzung der Wärmepumpentechnologie, insbesondere in Bezug auf den Einsatz von Luftwärme-pumpen.

[26] Sterner: Energiewirtschaftliches Kurzgutachten - Notwendigkeit und Chancen für Power-to-X-Technologien, Regensburg 2017, S. 10.

[27] Connect /Consentec/ FraunhoferISI/ R2B (Hrsg.): Leitstudie Strommarkt - Arbeitspaket Optimierung des Strommarktdesigns, Berlin 2014, S. 15.

[28] Energie-Perspektiven, Max-Planck-Institut für Plasmaphysik (Hrsg): Stromspeicher Teil 3- Wasserstoff-Speicher, Ausgabe 02/2008.

[29] Energie-Perspektiven, Max-Plack-Institut für Plasmaphysik (Hrsg.): Stromspeicher Teil 3 – Wasserstoff-Speicher, Ausgabe 02/2008.

[30] Schröder, Patrick, Riesige Salzkavernen sollen in Norddeutschland Windenergie speichern (Mai 2016), in: Ingenier.de. Technik – Karriere – News -; online unter: https://www.ingenieur.de/technik/fachbereiche/energie/riesige-salzkavernen-in-norddeutschland-windenergie-speichern/. (zuletzt abgerufen am 28.7.2021).  

[31] Vgl. Deutsche Energieagentur (dena) (Hrsg.), Integration Erneuerbarer Energien in das Erdgasnetz. Power-to-Gas eine innovative Systemlösung für die Energieversorgung von morgen entwickeln, 2012.

[32] Wuppertal Institut, DIW Econ, Bewertung der Vor- und Nachteile von Wasserstoffimporten im Vergleich zur heimischen Erzeugung (November 2020), S. 57ff.

[33] Wuppertal Institut (Hrsg.): Bewertung der Vor- und Nachteile von Wasserstoffimporten im Vergleich zur heimischen Erzeugung, (November 2020), S. 57f. Für das Gesamtjahr 2019 wurden nach dieser Studie eine Ausfallarbeit von 7.689 GWh und Entschädigungszahlungen von 901 Mio. Euro ermittelt.

[34] Nationaler Wasserstoffrat (Hrsg.), Wasserstofftransport (Juli 2021), S. 3.

[35] Eine Aufschlüsselung des globalen Nachfragebedarfs bezogen auf die einzelnen Anwendungsbereiche von Power-to-X findet sich bei Gerhardt et al., H2 im zukünftigen Energiesystem: Fokus Gebäudewärme, Hannover 2020, S. 46; für die Erzeugungspotenziale existieren bislang nur Länderstudien, vgl. für Deutschland  Wuppertal Institut (Hrsg.), Bewertung von Wasserstoffimporten; Bründlinger et al., dena-Leitstudie Integrierte Energiewende: Impulse für die Gestaltung des Energiesystems bis 2050, 2018; Sterchele et al., Wege zu einem klimaneutralem Energiesystem: Die deutsche Energiewende im Kontext gesellschaftlicher Verhaltensweisen, 2020; Robinius et al., Kosteneffiziente und klimagerechte Transformationsstrategien für das deutsche Energiesystem bis zum Jahr 2050, 2019; Mehr Demokratie & Bürger Begehren Klimaschutz, 2020; online unter: https://www.researchgate.net/publication/351049889_Klimavertragliche_Energieversorgung_fur_Deutschland_-_16_Orientierungspunkte_Climate-friendly_energy_supply_for_Germany-16_points_of_orientation (zuletzt abgerufen am 28.7.2021).

[36] Vgl. die Prognos-Studie: Kosten und Transformationspfade für strombasierte Energieträger, (Mai 2020), S. 22.

[37] Agora Energiewende et. al. (Hrsg.), Klimaneutrales Deutschland 2045 (Juni 2021), S. 22.

[38] Agora Energiewende (Hrsg.) Die Energiewende im Stromsektor: Stand der Dinge 2019. Rückblick auf die wesentlichen Entwicklungen sowie ein Ausblick auf 2020 (Januar 2020), S. 15. 2019 wurde erstmals die Speicherzufuhr nicht zum Bruttostromverbrauch addiert. In diesem Fall läge der Wert bei 574,9 TWh, vgl. ebd.

[39] Zum Problem der Zielerreichungslücke beim Windenergieausbau und möglichen Lösungsansätzen vgl. Günther et al., Ausbau der Windenergie an Land: Beseitigung von Ausbauhemmnissen im öffentlichen Interesse, S. 4.

[40] Nach den zwei berechneten Szenarien einiger Fraunhofer Institute kann dieser zwischen 250 und 800 TWh im Jahr 2050 (veraltetes Datum der Klimaneutralität) liegen. Vgl. Fraunhofer Institut et al. (Hrsg.): Eine Wasserstoff-Roadmap für Deutschland, Karlsruhe 2019, S. 10.

[41] Bundesministerium für Wirtschaft und Energie (Hrsg.), Die Nationale Wasserstoffstrategie (Juni 2020), S. 5.

[42] Agora Energiewende et. al. (Hrsg.), Klimaneutrales Deutschland 2045 (Juni 2021), S. 26. In die Summe der 422 TWh ist allerdings der internationale Flug- und Schiffsverkehr miteinbezogen. Berücksichtigt man nur den inländischen Verkehr kommt die Studie auf 265 TWh Bedarf. Insgesamt klammert das Szenario einen Einsatz im Gebäude/Wärmesektor aus und beschränkt sich auf den Einsatz in Energiewirtschaft, Verkehr und Industrie.

[43] Mehr Fortschritt wagen. Bündnis für Freiheit, Gerechtigkeit und Nachhaltigkeit. Koalitionsvertrag 2021 – 2025 zwischen der Sozialdemokratischen Partei Deutschlands (SPD), BÜNDNIS 90 / DIE GRÜNEN und den Freien Demokraten (FDP) S. 59f. Laut Vertrag sollen bis 2030 10 GW Elektrolyseleistung in Deutschland installiert werden. Damit können nach der NWS aber gerade einmal 28 TWh Wasserstoff produziert werden. Vgl. BMWi (Hrsg.), Die NWS, S. 5.

[44] BMWi (Hrsg.) Pressemitteilung: 900 Millionen Euro für Wasserstoffprojekt H2Global – Habeck: „Starten mit dem Hochlauf der Wasserstoffwirtschaft“ (23.12.2021), abrufbar unter: https://www.bmwi.de/Redaktion/DE/Pressemitteilungen/2021/12/20211223-900-millionen-euro-fuer-wasserstoffprojekt-h2global.html.

[45] Ein höheres Solar- oder Wind-Angebot in anderen Ländern führt zu niedrigeren Gestehungskosten, vgl. die systematische Studie des Institute of Energy Economics at the University of Cologne (EWI) (Hrsg.), Estimating Long-Term Gloabl Supply Costsfür Low-Carbon Hydrogen (November 2020), S. 33.

[46] Vgl. Energiehaushalt in Marokko, in: laenderdaten.info unter: https://www.laenderdaten.info/Afrika/Marokko/energiehaushalt.php (zuletzt abgerufen 21.07.2021) und Bauke Baumann, Grüner Wasserstoff aus Marokko – keine Zauberformel für Europas Klimaneutralität (Heinrich Böll Stiftung) (20.01.2021), abrufbar unter: https://www.boell.de/de/2021/01/20/gruener-wasserstoff-aus-marokko-keine-zauberformel-fuer-europas-klimaneutralitaet

[47] Wuppertal Inst., DIW Econ, Bewertung von Wasserstoffimporten, S. 11 u. 56.

[48] Nationaler Wasserstoffrat (Hrsg.), Wasserstofftransport (Juli 2021), S. 4.

[49] Ebd., S. 6ff. In der Erhebung wurden die Transportkosten für Pipelines (sowohl Neubau als auch Umwidmung), LH2, LOHC und Ammoniak verglichen.

[50] Wuppertal Inst., DIW Econ, Bewertung von Wasserstoffimporten, S. 11.

[51] Prognos-Studie, Kosten und Transformationspfade für strombasierte Energieträger (Mai 2020), S. 61.

[52] Vgl. IKEM (Hrsg.), Anrechenbarkeit, Zertifizierung und internationaler Handel von grünem Wasserstoff. Kurzgutachten (Juli 2021), S. 4ff.

Go back

You might also be interested in